Visualizing speech in a classroom setting using interactive ultrasound imaging

Sonya Bird1 and Heather Bliss1,2

\textit{University of Victoria1 and UBC2}
Acknowledgments

• Ute, Paiute, Goshute, Shoshone and Navajo Nations
• Bryan Gick, Murray Schellenberg, Strang Burton, and other members of UBC’s Interdisciplinary Speech Research Lab
• Workshop organizers and volunteers
• Banting post-doctoral fellowship to Heather
• SSHRC/UVic grant to Sonya
• NIH grant to Haskins Laboratories (Bryan)
Introductions

• Sonya and Heather

• Ultrasound imaging as a visualization tool for pronunciation learning and teaching - Two questions:
 a) How can we use US to help with pronunciation teaching and learning?
 b) How can we assess improvement, if we want to?
Benefits of ultrasound for pronunciation

Video credit: UBC Communications
Outline

1. Introduction to ultrasound imaging (20 minutes)
 • Ultrasound imaging in (L2) speech research
 • Affordability and accessibility
 • Methodology
 • Different contexts: one-on-one, classrooms, in community
 • Data processing and analysis
 • Qualitative vs. quantitative; static vs. dynamic; articulatory vs. other measurements

2. Interactive ultrasound session (30 minutes)
 • French /u/ vs. /y/

3. Discussion: questions and comments (10 minutes)
Ultrasound imaging in speech research
Ultrasound in L2 research

• Long history of US in phonetic research and speech therapy, but US has been used in L2 research only for the past decade or so

• No studies comparing US with other methods (to our knowledge)

• Studies tend to be focused on a small number of learners (10 or fewer) acquiring a small number of segments (e.g., English /l/; vowels)

• For a review of US in pronunciation, see Bliss, Abel, & Gick, to appear

• For a list of L2 studies using US, visit http://enunciate.arts.ubc.ca/research-and-case-studies/other-research/
Affordability and accessibility
Technical notes on affordability/accessibility

(1) Aloka SSD-5500
 • Not portable
 • ~ $150,000 CAD

(2) CHISON ECO 1 with EV probe (also with us!)
 • Portable
 • ~ $25,000 CAD

(3) Clarius handheld ultrasound probe
 • Released in 2016
 • For use with smartphone app
 • ~ $7000-10000 USD

(4) Seemore USB probe
 • $4900 CAD
 • includes software compatible with most windows-based machines
 • downloadable to multiple computers;
 • “the ultimate in portability and ideal for shared use”

(5) Articulate Instruments (Info from Scott Moisik, May 2017)
 • 3 probes, a probe stabilization helmet for UTI, and Alan Wrench’s software (among other goodies for audio, etc.) for about GBP9500
Methodology: Invasiveness

• Head and the probe stabilization may be important for quantitative US analysis

• ... Stabilization need not be particularly invasive (e.g., bottom right) (Gick et al., 2005)

• ... And there are “work-arounds” (e.g., bottom left)

• ... And stabilization is not crucial for other kinds of analysis or if US is primarily for pedagogic purposes

Stone & Davis 1995
Mielke et al., 2005
Gick et al., 2012
Methodology: Different contexts

- One-on-one
- Classroom settings
- In community
Data analysis

• Non US data
 • Listener judgements (auditory analysis of acoustic recording)
 • Acoustic analysis
 • Self reflections (benefit of tool to learning)

• US data
 • Generally requires capturing US video + audio onto an external machine
 • Variable process; not necessarily complex!
 • Qualitative vs. quantitative
US data: qualitative analysis

- Eyeballing tongue contours (visual analysis of US image/video)

Figure 8. Ultrasound images of one participant’s improved /r/ word

(from Tsui 2012, p. 58)
US data: quantitative analysis

• Static measurements: “magic moment” studies

• Dynamic measurements: movement between sounds
 • Can be automated

(from Davidson, 2006)
Interactive US session: French /u/ vs. /y/

• Mock mini-experiment
• Structure of the study
 • Pre-test: baseline for potential improvement + description of L2 pronunciation
 • Training
 • One-on-one US session with a fluent speaker (alternative: pre-recorded videos)
 • (Possible other conditions: auditory-only training; no training)
 • Post-test: assessment of improvement

• Methods = qualitative: self-reflection, listener judgments (alternative: quantitative: acoustics, articulation)
Pre-test

<table>
<thead>
<tr>
<th>French</th>
<th>IPA</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>bout</td>
<td>[bu]</td>
<td>end</td>
</tr>
<tr>
<td>but</td>
<td>[by]</td>
<td>goal</td>
</tr>
<tr>
<td>pou</td>
<td>[pu]</td>
<td>(head) louse</td>
</tr>
<tr>
<td>pu</td>
<td>[py]</td>
<td>was able to</td>
</tr>
<tr>
<td>French</td>
<td>IPA</td>
<td>English</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>bout</td>
<td>[bu]</td>
<td>end</td>
</tr>
<tr>
<td>but</td>
<td>[by]</td>
<td>goal</td>
</tr>
<tr>
<td>vous</td>
<td>[vu]</td>
<td>you (pl)</td>
</tr>
<tr>
<td>vu</td>
<td>[vy]</td>
<td>seen</td>
</tr>
<tr>
<td>nous</td>
<td>[nu]</td>
<td>we</td>
</tr>
<tr>
<td>nu</td>
<td>[ny]</td>
<td>naked</td>
</tr>
<tr>
<td>loup</td>
<td>[lu]</td>
<td>wolf</td>
</tr>
<tr>
<td>lu</td>
<td>[ly]</td>
<td>read (past)</td>
</tr>
<tr>
<td>roue</td>
<td>[ru]</td>
<td>wheel</td>
</tr>
<tr>
<td>rue</td>
<td>[ry]</td>
<td>street</td>
</tr>
<tr>
<td>voulu</td>
<td>[vuly]</td>
<td>wanted</td>
</tr>
</tbody>
</table>
Post-test

<table>
<thead>
<tr>
<th>French</th>
<th>IPA</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>bout</td>
<td>[bu]</td>
<td>end</td>
</tr>
<tr>
<td>but</td>
<td>[by]</td>
<td>goal</td>
</tr>
<tr>
<td>pou</td>
<td>[pu]</td>
<td>(head) louse</td>
</tr>
<tr>
<td>pu</td>
<td>[py]</td>
<td>was able to</td>
</tr>
</tbody>
</table>

- Listener judgments
- Self-reflection: engagement, motivation, confidence
Discussion

• Appropriate target sounds/sequences
• Ways of adding complexity
 • Different segmental and prosodic contexts; sound sequences
 • Different ways of assessing value of speech visualization
• Other considerations
Summing up

• Ultrasound imaging has intuitive appeal to learners
• It is entirely feasible
 • Doesn’t need to be invasive
 • Can be done in a variety of settings
 • Doesn’t necessarily require complex articulatory data analysis
• More studies are needed to show what its benefits are
 • Comparative (US vs. other visualization methods)
 • Classroom studies (e.g., beyond single participant)
 • Local (particular articulations) vs. global (awareness and motivation)
Thank you

• sbird@uvic.ca
• hbliss@uvic.ca

• Slides:
 http://enunciate.arts.ubc.ca/research-and-case-studies/team-research/
References

